Caffe-SSD Inference on Edge Device Using TVM and Hybrid Script

Masahiro Hiramori
Hiramori.Masahiro@ct.MitsubishiElectric.co.jp

MITSUBISHI ELECTRIC CORPORATION
Motivation

- Object Detection (OD) is a computationally expensive task
 - Needs performance optimization to run on the edge devices
- Our internal OD model is based on models created by the Caffe-SSD
 - Caffe-SSD: Caffe’s implementation of Single Shot Multibox Detector

Problem

- TVM cannot import models created by the Caffe-SSD
 - Permute layer, PriorBox layer, and DetectionOutput layer are not supported by the Caffe Frontend in TVM
Add **Permute**, **PriorBox**, and **DetectionOutput** layer converters to existing **Caffe frontend**

- **Permute** can be converted to `tvm.relay.transpose` operator

Add **PriorBox** and **DetectionOutput** operators to **TVM IR** using Hybrid Script

- Why? -> There exists equivalent Relay operators (e.g. `vision.multibox_prior`, `vision.non_max_suppression`). However, none of them are 100% compatible with Caffe-SSD’s **PriorBox** and **DetectionOutput** layers
• Hybrid Script is a DSL for constructing TVM IR in Python
 • Subset of Python language with some extensions

```python
@hybrid.script
def hybrid_get_loc_predictions(loc, num, num_preds_per_class, num_loc_classes, share_location):
    if share_location:
        all_loc_preds = output_tensor((1, num_loc_classes, num_preds_per_class, 4), loc.dtype)
    else:
        all_loc_preds = output_tensor((num, num_loc_classes, num_preds_per_class, 4), loc.dtype)
    for i in parallel(num):
        for p in const_range(num_preds_per_class):
            for c in const_range(num_loc_classes):
                all_loc_preds[i, c, p, 0] = loc[0, i * (num_preds_per_class * num_loc_classes * 4) + p * num_loc_classes * 4 + c * 4 + 0]
                all_loc_preds[i, c, p, 1] = loc[0, i * (num_preds_per_class * num_loc_classes * 4) + p * num_loc_classes * 4 + c * 4 + 1]
                all_loc_preds[i, c, p, 2] = loc[0, i * (num_preds_per_class * num_loc_classes * 4) + p * num_loc_classes * 4 + c * 4 + 2]
                all_loc_preds[i, c, p, 3] = loc[0, i * (num_preds_per_class * num_loc_classes * 4) + p * num_loc_classes * 4 + c * 4 + 3]
    return all_loc_preds
```

Implementation of the DetectionOutput operator using Hybrid Script (code fragment)
Experimental results

- Evaluated on Raspberry Pi 4 with Debian 10 buster
- Single image inference time of TVM optimized model is 57% shorter than that of Caffe-SSD
- Maximum memory usage of TVM is 38% lower than that of Caffe-SSD
Conclusions and Future works

Conclusions

• **Motivation:** want to optimize our internal OD model for the edge devices

• **Problem:** TVM couldn't compile models created by the Caffe-SSD

• **Idea:** added support for missing operators to TVM’s Caffe frontend using **Hybrid Script**

• **Results:** inference time is **57%** faster and maximum memory usage is **38%** lower than Caffe-SSD

Future works

• Apply auto-tuning (AutoTVM / AutoScheduler)

• Contribute our implementation to the upstream

 • ![CI][Caffe Frontend] Change the caffe deps into SSD distribution #9060

 • ![Caffe Frontend] Add support for Permute layer #9157