Monitoring
ML on the Edge

Alessya Visnjic, CEO @ WhyLabs
Monitoring at ML on the Edge
Alessya Visnjic, CEO @ WhyLabs
Your product is out in the wild!

Now, the **fun** part:

- Ensure that it works the way you intended
- Prevent it from RapidUncontrolledThermalEvents
- Figure out how to improve it
Suddenly: performance degraded by 10%

Time to notice the problem: 3 weeks
Time to root-cause the problem: 1 week
Time to rollback firmware across the fleet: 1 day

~1 month to fix a buggy code change:
swapped the colors between channels
Suudenly: # of objects detected in a scene down by 25%

Next release is blocked for an unknown reason
Time to root-cause the problem: 1 week
Time to update configuration on the fleet: 1 day

Dozens of teams blocked for weeks by a bug:
default depth encoding changed from 1 meter to 10 meters
Monitoring ML at the edge is very hard

- A lot of data is just ephemeral
- Massive volumes of sensor data (>10 GB/min)
- Limited and intermittent connectivity
- Expensive data transfer / expensive post-processing
- Sensor problems vs. model problems vs. system problems
- Diversity in the fleet
- Time-to-resolution can be weeks or months
Monitoring ML at the edge, with whylogs

- Sketch key metrics locally, on the device
- Introduce meaningful batches (1min, 5min, 1hr)
- Sync tiny sketches when connectivity is available
- Merge statistics over time and over devices
- Collect sketches on signal data, metadata, model outputs, custom metrics
- Monitor metrics as soon as it’s synced
- Pinpoint the problem to a batch to debug faster

github.com/whylabs/whylogs
whylogs: open standard for data logging

❖ Lightweight
❖ Configurable
❖ Portable
❖ Mergeable

github.com/whylabs/whylogs
Monitoring Data Health:

- Metadata from messages
- Model input statistics:
 - Volume
 - Structured data statistics & distributions
 - Missing data / incomplete data
 - Statistical features from non-structured data

github.com/whylabs/whylogs
Monitoring Model health:

➢ Predictions
 ■ Labels
 ■ Tracks
 ■ Bounding boxes / polygons

github.com/whylabs/whylogs
Monitoring System health:

- **Device / sensor metadata**
 - Volume
 - Settings / configurations

- **Runtime metadata**
 - Latency
 - Throughput
 - Temperature
 - Voltage

github.com/whylabs/whylogs
Thank you!

Help build the open standard for data logging:

github.com/whylabs/whylogs
alessya@whylabs.ai
@zalessya

Monitor with WhyLabs

whylabs.ai/free
Join.slack.whylabs.ai
Thank you!

Help build the open standard for data logging:

github.com/whylabs/whylogs

alessya@whylabs.ai
@zalessya

Monitor with WhyLabs

whylabs.ai/free
Join.slack.whylabs.ai
bit.ly/whylogs:
Logging for the ML stack
Help build the open standard for data logging:

github.com/whylabs/whylogs

join.slack.whylabs.ai

Thank you!

alessya@whylabs.ai
@zalessya
Monitoring an ML applications means knowing answers to these questions with doing manual work:

- Is the system running as expected?
- Is the model receiving healthy data?
- Do my predictions look healthy?
- Is my model degrading over time?
- Why is performance dropping suddenly?
- What can I change to improve the model performance?
What if you could monitor for changes?

❖ Is the model seeing healthy data?
❖ What do the predictions look like?
❖ How is the model performing?
❖ How is the current data different from training data?
❖ How was yesterday’s data different from today?
❖ How was yesterday’s data different from last week’s data?
❖ Massive volumes of telemetry data (10GB/min)
❖ Limited and intermittent connectivity
❖ Expensive data transfer / expensive post-processing
❖ Sensor problems vs. device problems vs. system problems
❖ Time-to-resolution is weeks or months
Agenda

- ML Stack: what is missing?
- How to design data logging
- whylogs: open standard for data logging
- Use cases
- Q&A
If you are not keeping an eye on the model in production...

... your customers are!
Issues **encountered in production** (small sample)...

- Experiment/production environment mismatch
- Wrong model version deployed
- Underprovisioned hardware
- Inappropriate hardware
- Latency/SLA issues
- Data permissions misconfigured
- Untracked changes broke prod
- Traffic sent to the wrong model
- Computational instability
- Customers gaming the model (adversarial attacks)
- PII data exposed
- Expected accuracy doesn’t materialize
- Pre-processing mismatch in experiments vs. production
- Retrained on faulty data
- Accuracy improves on one segment, regresses in others
- Outliers predicted incorrectly
- Bias identified
- Correlation with protected features
- Overfitting on training/test
- Surge in missing values
- Surge in duplicates
- Poor performance on outliers
- Data quality issues affect accuracy
- Production data doesn’t match test/training
- Accuracy is decaying over time
- Data drift in inputs
- Concept drift in outputs
- Extreme predictions for out of distribution data
- Model not generalizing on new data / new segments
- Major consumer behavior shift

...or it simply doesn’t work, and nobody know why...
Issues encountered in production (small sample)...

- Experiment/production environment mismatch
- Wrong model version deployed
- Underprovisioned hardware
- Inappropriate hardware
- Latency/SLA issues
- Data permissions misconfigured
- Untracked changes broke prod
- Traffic sent to the wrong model
- Computational instability
- Customers gaming the model (adversarial attacks)
- PII data exposed
- Expected accuracy doesn’t materialize

Data problems!

- Pre-processing mismatch in experiments vs. production
- Retrained on faulty data
- Accuracy improves on one segment, regresses in others
- Outliers predicted incorrectly
- Bias identified
- Correlation with protected features
- Overfitting on training/test
- Surge in missing values
- Surge in duplicates

- Poor performance on outliers
- Data quality issues affect accuracy
- Production data doesn’t match test/training
- Accuracy is decaying over time
- Data drift in inputs
- Concept drift in outputs
- Extreme predictions for out of distribution data
- Model not generalizing on new data / new segments
- Major consumer behavior shift
ML stack: moving massive volumes of data

- Raw Data
 - Delta Lake
 - Hive
 - Hadoop
 - SQL

- Feature Transformations
 - Apache Spark
 - Pandas
 - scikit-learn

- Model Training
 - Apache Spark
 - Keras
 - Tensorflow
 - scikit-learn

- Batch/Stream Inference
 - mlflow
 - Kubeflow
How do you test, monitor, debug, and document data?
ML Stack is missing **data & model logging**

- Raw Data
- Feature Transformations
- Model Training
- Batch/Stream Inference

Log metadata & statistical properties of data
A good data log should capture:

- Metadata
- Counts
- Statistics
- Distributions

Stratified sample
Key properties of a data log:

- Lightweight
- Portable
- Mergeable
- Configurable
- Close to code
Before whylogs: **data is ephemeral**
whylogs:
a standard format for representing a snapshot of data
Profile and log with **1 line of code**

```python
from whylogs import get_or_create_session
import pandas as pd

session = get_or_create_session()

df = pd.read_csv("path/to/file.csv")

with session.logger(dataset_name="my_dataset") as logger:

    # dataframe
    logger.log_dataframe(df)

    # dict
    logger.log({"name": 1})

    # images
    logger.log_images("path/to/image.png")
```
LIVE DEMO?

I ALSO LOVE TO LIVE DANGEROUSLY...
Works with you favorite tools out of the box
Run **data logging** without overhead

Using streaming algorithms to capture data statistics, whylogs ensures a constant memory footprint, scales with the number of features in the dataframe, and outputs lightweight log files (json, protobuf, etc).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>No. of Entries</th>
<th>No. of Features</th>
<th>Est. Memory Consumption</th>
<th>Output Size (uncompressed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lending Club</td>
<td>1.6GB</td>
<td>2.2M</td>
<td>151</td>
<td>14MB</td>
<td>7.4MB</td>
</tr>
<tr>
<td>NYC Tickets</td>
<td>1.9GB</td>
<td>10.8M</td>
<td>43</td>
<td>14MB</td>
<td>2.3MB</td>
</tr>
<tr>
<td>Pain pills in the USA</td>
<td>75GB</td>
<td>178M</td>
<td>42</td>
<td>15MB</td>
<td>2MB</td>
</tr>
</tbody>
</table>
Capture **accurate data distributions**

Whylogs profiles 100% of the data to accurately capture distributions. Capturing distributions from sampled data is significantly less accurate. This chart presents median errors for distributions estimated with whylogs vs. from sampled data.
You can Test Monitor Debug Document data with whylogs!!
Logging enables all key **MLOps** activities

Once data is logged systematically, whylogs outputs can be used to test, monitor, and debug data. Use whylogs at any point of the ML stack and through the lifecycle of the ML application.
2021 ML lifecycle

Source: Google Cloud AI
whylogs @ Data + AI Summit

May 27, 2021 05:00 PM: Re-imagine Data Monitoring with whylogs and Spark

May 26, 2021 03:50 PM PT: The Critical Missing Component in the Production ML Stack

May 27, 2021 11:00 AM PT: Semantic Image Logging Using Approximate Statistics & MLflow
2021 ML lifecycle

Source: Google Cloud AI
Logging in DevOps vs MLOps

DevOps:
- System logs: Hostname, process type, log type, application, action, and TCP socket status
- Monitor:
 - Load
 - Response time
 - CPU
 - Memory
 - Storage
 - I/O

ML/AI:
- Data logs (sampling): an entire feature vector
- Data logs (profiling): statistical properties of each feature
- Monitor:
 - Missing values
 - Cardinality
 - Data Type
 - Summary statistics
 - Data distribution
 - Top K items distribution
 - Unstructured data stats

ML metrics requires massive data cardinality support. A model tracking 105 features, 4 metrics per feature, 420 metrics. Adding tracking for 3 segments, that’s 1680 metrics!
Data logging **must be scalable**

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>No. of Entries</th>
<th>No. of Features</th>
<th>Est. Memory Consumption</th>
<th>Output Size (uncompressed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lending Club</td>
<td>1.6GB</td>
<td>2.2M</td>
<td>151</td>
<td>14MB</td>
<td>7.4MB</td>
</tr>
<tr>
<td>NYC Tickets</td>
<td>1.9GB</td>
<td>10.8M</td>
<td>43</td>
<td>14MB</td>
<td>2.3MB</td>
</tr>
<tr>
<td>Pain pills in the USA</td>
<td>75GB</td>
<td>178M</td>
<td>42</td>
<td>15MB</td>
<td>2MB</td>
</tr>
</tbody>
</table>
import mlflow
import whylogs

whylogs.enable_mlflow()
Data logging with **mlflow**

```python
with mlflow.start_run(run_name="whylogs demo"):
    predicted_output = model.predict(batch)

mae = mean_absolute_error(actuals, predicted_output)

mlflow.log_params(model_params)
mlflow.log_metric("mae", mae)

# whylogs profiles are collected in one line,
# similar to other MLflow Tracking APIs
mlflow.whylogs.log_pandas(batch)
```
From logging to visualizing **data drift**

```python
from whylogs.viz import ProfileVisualizer

mlflow_profiles = whylogs.mlflow.get_experiment_profiles("experiment_1")
viz = ProfileVisualizer()
viz.set_profiles(mlflow_profiles)
viz.plot_distribution("free sulfur dioxide", ts_format="%d-%b-%y %H:%M:%S")
```
Enabling ML monitoring: **Instrument data**
Enabling ML monitoring: **Identify anomalies**
Enabling ML monitoring: **notify stakeholders**

PRODUCTION ENVIRONMENT

- Live inference
- Batch inference
- Offline: Training/Testing
- IoT or Sensor data

Visualization Layer

- Debugging
- Telemetry Store
- Monitoring and anomaly detection

ML PIPELINE TRIGGERS

TEAM WORKFLOWS
ML models struggle in the “wild”

△ How to avoid #AI pitfalls? Repeat after me: 🌍 "The world represented by your training data is the only world you can expect to succeed in."

#machinelearning #ai #datascience #statistics #artificialintelligence #Data #deeplearning