Tsunami: Training in TVM with Relay

TVMCon 2021 Lightning Talk

Altan Haan
MLSys @ OctoML
Current status of TVM training in main

- Gradient coverage for operators
 - Still missing some, but steadily improving in main
- Automatic differentiation (AD) robustness
 - Graph AD is now fairly stable
- No framework to handle the “high-level” training features
 - Parameters (initialization, tracking, updating)
 - Training optimizers (SGD, ADAM, etc.)
 - Model definitions (with parameter tracking, serialization)
 - We could try using another framework to handle these, but integration with TVM is tricky (see e.g. https://lernapparat.de/transformers-pytorch-tvm/)
Current status of TVM training in main

- Gradient coverage for operators
 - Still missing some, but steadily improving in main
- Automatic differentiation (AD) robustness
 - graph AD is now fairly stable
- No framework to handle the “high-level” training features
 - Parameters (initialization, tracking, updating)
 - Training optimizers (SGD, ADAM, etc.)
 - Model definitions (with parameter tracking, serialization)
 - We could try using another framework to handle these, but integration with TVM is tricky (see e.g. https://lernapparat.de/transformers-pytorch-tvm/)
Tsunami: a simple TVM training framework

- Provides a modular API for defining models, based off of established training framework principles (e.g. PyTorch’s nn.Module)
- Tracks parameters for models, handling initialization and weight updates
- Provides training optimizers
- All computations (model layers, optimizer updates for weights and internal state) are written in Relay
- Backward graph construction is handled behind the scenes, with a simple user-facing API for running a training step
Example code: Module

class BertLMPredictionHead(Module):
 def __init__(self, config: BertConfig):
 super().__init__()
 self.transform = BertPredictionHeadTransform(config)
 self.units_out = config.vocab_size
 self.bias = Parameter((config.vocab_size,), ts.parameter.Constant(0))

 def forward(self, hidden_states, word_embedding_weight):
 hidden_states = self.transform(hidden_states)
 predictions = (nn.batched_dense_op(
 hidden_states, word_embedding_weight, units=self.units_out
)
 + self.bias())
 return predictions

sub-module
Trainable parameter (init to 0)
Builds a Relay expression
Example code: Optimizer

class SGD(Optimizer):
 def __init__(self, parameters, device, lr=0.01, momentum=0.0, init=False):
 self.lr = lr
 self.momentum = momentum
 self.has_momentum = momentum != 0.0
 super().__init__(parameters, device, init=init)

 def init(self):
 self.register_state(np.array([[self.lr], dtype="float32"], device=self._device, name="lr")
 if self.momentum != 0.0:
 self.has_momentum = True
 self.register_state(
 np.array([[self.momentum], dtype="float32"], device=self._device, name="momentum")
)
 for param in self.parameters:
 self.register_state(
 np.zeros(param.concrete_shape, param.dtype),
 device=self._device,
 name=param.fqn + "_velocity",
)
Example code: Optimizer

```python
def update(self, weights, grads):
    assert len(self.parameters) == len(weights) == len(grads)
    state_updates = []
    weight_updates = []

    # lr doesn't change inside training iteration
    state_updates.append(self.state_var("lr"))
    if self.has_momentum:
        state_updates.append(self.state_var("momentum"))

    for param, weight, grad in zip(self.parameters, weights, grads):
        if self.has_momentum:
            w_v_next = self.state_var("momentum") * self.state_var(
                param.fqn + "_velocity"
            )
            w_v_next = w_v_next - self.state_var("lr") * grad
            state_updates.append(w_v_next)
            w_next = weight + w_v_next
        else:
            w_next = weight - self.state_var("lr") * grad
            weight_updates.append(w_next)

    return weight_updates, state_updates
```
Putting it all together

Compile and initialize the model:

```python
model = BertForMaskedLM(config)
optim = SGD(model.parameters(), DEVICE, lr=lr, momentum=0.0)
model.compile_train(
    optim=optim,
    device=DEVICE,
    target=TARGET,
    profiling=False,
    opt_level=3,
    mixed_precision=mixed_precision,
)
```

Train the model:

```python
loss = model.train([[input_ids, token_type_ids, attention_mask], [labels]])
optim.step()
```
Currently we take a simple approach:

- Transform FP32 GEMMs to FP16 input -> FP32 output mixed precision GEMMs
- Insert FP16 casts before GEMM calls
- Scale the loss value by a given scaling factor (in case of dynamic range issues)
- Scale gradients by inverse of loss scale before performing weight update

This approach is easily realized as a Relay transformation pass in ~50 LOC Python

Possible future extensions:

- FP16 support for more ops
- Cast and keep majority of graph in FP16, cast back for numerically sensitive ops
- Try using FP16 -> FP16 GEMMs
Case study: BERT and DLRM
Case study: BERT and DLRM

Tsunami DLRM Training on CTR Kaggle Dataset

BCE Loss vs Training Steps

Accuracy vs Training Steps

OctoML
Case study: BERT and DLRM

V100 results (forward + backward + optimizer step)

- **BERT 16x128**:
 - Tsunami: 221.358 ms
 - Tsunami (mixed precision): 180.036 ms
 - PyTorch 1.8.0+cu111: 430.873 ms

- **BERT 4x512**:
 - Tsunami: 286.094 ms
 - Tsunami (mixed precision): 244.357 ms
 - PyTorch 1.8.0+cu111: 468.091 ms

- **DLRM**:
 - Tsunami: 3.473
 - Tsunami (mixed precision): 4.008
 - PyTorch 1.8.0+cu111: 6.68

Latency (ms)
Limitations & Future Work

- Stateful operators like batch norm and dropout
- In-place operations like sparse embedding weight updates in DLRM
- Dynamic shape support (most commonly dynamic batch size)
- Non-graph model support
- Check out the ongoing work on Relax, which aims to address these limitations of Relay.
Acknowledgements

Thanks to my OctoML collaborators: Tianqi Chen, Tristan Konolige, Wuwei Lin, Thierry Moreau, Jared Roesch, Junru Shao, Chris Sullivan, Bing Xu (now at FB).

This work was done in partnership with Michiel Vermeulen at AMD - we thank them for their support!
Thank you!