Transparent TVM Backend Acceleration
Boost ML Upstream Frameworks

Tiejun Chen
VMware OCTO, ATG
11/17/2021
Agenda
Transparent TVM Backend Acceleration

- Background
- Project MLInferBooster Introduction
- Summary
Background
Why

- TVM - A compiler stack for deep learning systems
 - Open source
 - TVM supports most AI/ML frameworks
 - TVM targets various types of AI accelerators
 - Including CPU
 - Cross-compiling
 - Host =! Target
 - Good ML inference performance

You have to
- Learn TVM
- Inspect pre-trained ML
- Get AI Acceleration info
- Call TVM APIs
- Build into your platform
 - Relay cache
 - Scheduler
 - AutoTVM
- ...

We love TVM!
Project MLInferBooster
Our solution

- **Target**
 - Power ML upstream frameworks by means of TVM

- **Goal**
 - Build a TVM Serving System
 - Backend
 - Automated
 - Unified server architecture

- **How**
 - Interpose ML framework python API
 - Built-in TVM processing – Auto {detecting, compiling, scheduling, inferencing, etc}
 - Cache
 - Scheduler
Project MLInferBooster
Auto-compiling & inferencing

- Model
 - Auto Detecting Model
 - Configuring Target Accelerator
 - Building model to TVM Relay
 - TVM Compiler

- TVM Runtime
 - Format, Shape – input, output
 - CPU, CUDA, OpenCL, ...

- predict
Project MLInferBooster

Others

- Auto-detecting AI accelerator
- Scheduler
 - Infer task <-> AI accelerator
- Autotvm
 - Flexibility
- Model cache
 - Cache the compiled model information
 - Mapping mechanism
 - Least Frequently Used (LFU) cache replacement policy
Project MLInferBooster

Demo
Project MLInferBooster

Summary

- Supported
 - Tensorflow/Pytorch/ONNX
 - {Nvidia, AMD} GPU, Xilinx FPGA, CPU

- Plan
 - Interpose C++ runtime
 - ML Serving system

Thank you!

@Tiejun_Chen
<tiejunc@vmware.com>