Better Tensor Core Support in TVM with CUTLASS

Leyuan Wang, Dec. 16, 2021
Outline

I. Motivation
II. Why CUTLASS
III. Integration: BYOC CUTLASS
IV. Some performance numbers
Motivation

- Nvidia GPUs are mostly used in machine learning cloud computing.
- Tensor Core acceleration for mixed precision (e.g. fp16) deep learning model inference is widely used.
Motivation

- Currently there's performance gap between TVM and vendor libraries on compute intensive operators (e.g. gemm, conv, etc.) in deep learning workloads using tensor cores on NVIDIA GPUs.

![Normalized speed vs Workload(M,N,K)](image)
Motivation

- Long tuning time for searching best-performance compute intensive operators in current autotvm.
- A tophub data base can't solve the whole problem because of dynamic workloads and cost to maintain.
Outline

I. Motivation
II. Why CUTLASS
III. Integration: BYOC CUTLASS
IV. Some performance numbers
Why choosing CUTLASS

- An open-source CUDA C++ templated header library, containing many modularized and customizable components.
- For single compute intensive kernels, CUTLASS can compete with SOTA close-source vendor libraries on NVIDIA GPUs.
- Support epilogue fusion, persistent kernel fusion, etc. which is a beneficial feature compared with other vendor libraries.
- Support different functionalities such as GEMM and conv, etc..
- Support different data type tensor core instructions (b1, int4, int8, fp16, bf16, fp32, tf32, fp64, complex, quaternion).
- Support different generations of hardware (Volta, Turing, Ampere, etc.).
- Support different versions of CUDA compilers.
Outline

I. Motivation
II. Why CUTLASS
III. Integration: BYOC CUTLASS
IV. Some performance numbers
Integration method

BYOC (Bring Your Own Codegen)

System Flow Graph

Pipeline: MergeComposite -> Annotate Target -> Graph Partition -> Tuner -> Codegen -> Compile -> Write back to graph -> Runtime
Outline

I. Motivation
II. Why CUTLASS
III. Integration: BYOC CUTLASS
IV. Some performance numbers
Less Tuning Time, Faster Speed

- Baseline: Ansor tune w/ trials = 900 * # of tasks
- We finish tuning within 20 minutes for all models while Ansor takes 12 hours on average

![Graph showing tuning time and speed comparisons between Ansor and Ours for different models.](image)
GEMM Performance

- Data type: FP16
- Baseline: Tune each operator for 2000 trials using Ansor
- GEMM workloads: square matrix + Bert GEMMS with bs 32, seq_length 40
- Hardware: NVIDIA T4 GPU
CUTLASS integration is merged into TVM
THANKS.
CUTLASS GitHub Community
19.5K clones, 1.4K stars, and many active users

CUTLASS Team
Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig, Duane Merrill, Pradeep Ramani, Cris Cecka, Vijay Thakkar

Contributors
Timothy Costa, Naila Farooqui, Markus Hohnerbach, Alan Kaatz, Wei Liu, Piotr Majcher, Dhiraj Reddy Nallapa, Mathew Nicely, Kyrylo Perelygin, Aniket Shivam, Paul Springer, Pawel Tabaszewski, Chinmay Talegaonkar, John Tran, Jin Wang, Yang Xu, Scott Yokim

Acknowledgements
Olivier Giroux, Mostafa Hagog, Bryce Lelbach, Julien Demouth, Joel McCormack, Aartem Belevich, Peter Han, Timmy Liu, Yang Wang, Nich Zhao, Jack Yang, Vicki Wang, Junkai Wu, Ivan Yin, Aditya Alturi, Shang Zhang, Takuma Yamaguchi, Stephen Jones, Luke Durant, Harun Bayraktar
AGENDA

Overview
NVIDIA Ampere Architecture and CUTLASS

Abstractions for Tensor Cores
Accelerated matrix operations

Efficient Epilogues
Data exchange for efficient access to Global Memory

Epilogue Fusion Design Patterns
Opportunities for fusing custom operations with GEMM and CONV
New and Faster Tensor Core Operations
- Floating-point Tensor Core operations $8x$ and $16x$ faster than F32 CUDA Cores
- Integer Tensor Core operations $32x$ and $64x$ faster than F32 CUDA Cores
- New IEEE double-precision Tensor Cores $2x$ faster than F64 CUDA Cores

Additional Data Types and Mode
- Bfloat16, double, Tensor Float 32

Asynchronous copy
- Copy directly into shared memory - deep software pipelines

Many additional new features - see “Inside NVIDIA Ampere Architecture”

(Slides borrowed heavily from GTC’2020 and GTC’2021 CUTLASS presentations)
CUTLASS PERFORMANCE ON NVIDIA AMPERE ARCHITECTURE

Mixed Precision Floating Point

Tensor Core - BF16, F16
13x
Tensor Core - TF32
5.7x
CUDA Core - F32

Double Precision Floating Point

Tensor Core - F64
2x
CUDA Core - F64

Mixed Precision Integer

Tensor Core - INT4
13.8x
Tensor Core - INT8
7.7x
CUDA Core - INT8

m=3456, n=4096
CUTLASS
CUDA C++ Template Library for Deep Learning and High Performance Computing

CUTLASS: optimal CUDA C++ templates at all scopes and scales

- **Device**
 - { GEMM, Convolution, Reductions } x { all data types } x { SIMT, Tensor Cores } x { all architectures }

- **Kernel**
 - GEMM, Batched GEMM, Convolution, Reduction, Fused output operations, Fused input operations

- **Threadblock**
 - Pipelined Matrix Multiply, Epilogue, Collective access to tensors, Convolution matrix access

- **Warp**
 - Tensor Core Multiply-Add operations, Efficient access to permuted tensor layouts

- **Thread**
 - Numeric conversion, `<functional>` operators on arrays, complex<T>, fast math algorithms

- **Architecture intrinsic**
 - Templates wrapping architecture-specific PTX instructions (e.g. mma, cp.async, ldmatrix, cvt)

Open source: https://github.com/NVIDIA/cutlass
- Latest revision: CUTLASS 2.8
- Documentation: https://github.com/NVIDIA/cutlass#documentation
- Functionality: https://github.com/NVIDIA/cutlass/blob/master/media/docs/functionality.md
CUTLASS
CUDA C++ Templates for Deep Learning and Linear Algebra

GTC 2019
- CUTLASS 1.3 - native NVIDIA V100 Tensor Cores
 - CUDA 10.2
 - CUDA 10.1
 - CUTLASS 2.0 - native NVIDIA Turing Tensor Cores
 - CUDA 11.0
 - CUDA 11.1
 - CUTLASS 2.3 - sparse GEMMs

GTC 2020
- CUTLASS 2.2 - NVIDIA A100
 - CUDA 11.1
 - CUDA 11.2
 - CUTLASS 2.5 - Tensor reduction 3D Convolutions
 - CUDA 11.3
 - CUDA 11.5
 - CUTLASS 2.7 - GEMM-GEMM fusion

CUDA 11.0
- CUTLASS 2.2 - NVIDIA A100
 - CUDA 11.1
 - CUDA 11.2
 - CUTLASS 2.5 - Tensor reduction 3D Convolutions

CUDA 11.1
- CUTLASS 2.4 - Implicit GEMM Convolutions
 - CUDA 11.2
 - CUDA 11.3
 - CUDA 11.5
 - CUTLASS 2.7 - GEMM-GEMM fusion

CUDA 11.2
- CUTLASS 2.6 - Epilogue Fusion
 - CUDA 11.3
 - CUDA 11.5
 - CUTLASS 2.7 - GEMM-GEMM fusion

CUDA 11.3
- CUTLASS 2.6 - Epilogue Fusion
 - CUDA 11.5
 - CUTLASS 2.7 - GEMM-GEMM fusion

CUDA 11.4

CUDA 11.5
- CUTLASS 2.8 - Input Fusion

GTC 2021
- CUTLASS 2.7 - GEMM-GEMM fusion

https://github.com/NVIDIA/cutlass
ABSTRACTIONS FOR NVIDIA TENSOR CORES
HELLO WORLD: TENSOR CORES

Map each thread to coordinates of the matrix operation

Load inputs from memory

Perform the matrix operation

Store the result to memory

CUDA example

```c
__global__ void tensor_core_example_8x8x16(
    int32_t *D,
    uint32_t const *A,
    uint32_t const *B,
    int32_t const *C) {

    // Compute the coordinates of accesses to A and B matrices
    int outer = threadIdx.x / 4; // m or n dimension
    int inner = threadIdx.x % 4; // k dimension

    // Compute the coordinates for the accumulator matrices
    int c_row = threadIdx.x / 4;
    int c_col = 2 * (threadIdx.x % 4);

    // Compute linear offsets into each matrix
    int ab_idx = outer * 4 + inner;
    int cd_idx = c_row * 8 + c_col;

    // Issue Tensor Core operation
    asm(
        "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 "
        "  { %0, %1 }, "
        "    %2,       "
        "    %3,       "
        "  { %4, %5 }; "
        : "=r"(D[cd_idx]), "=r"(D[cd_idx + 1])
        :
        "r"(A[ab_idx]),
        "r"(B[ab_idx]),
        "r"(C[cd_idx]), "r"(C[cd_idx + 1])
    );
}
```
PERFORMANCE IMPLICATIONS

Load A and B inputs from memory: 2 x 4B per thread
Perform one Tensor Core operation: 2048 flops per warp

2048 flops require 256 B of loaded data ➔ 8 flops/byte

NVIDIA A100 Specifications:
• 624 TFLOP/s (INT8)
• 1.6 TB/s (HBM2) ➔ 400 flops/byte

This kernel is global memory bandwidth limited.

CUDA example

```c
__global__ void tensor_core_example_8x8x16(
    int32_t* D,
    uint32_t const* A,
    uint32_t const* B,
    int32_t const* C) {

    // Compute the coordinates of accesses to A and B matrices
    int outer = threadIdx.x / 4;  // m or n dimension
    int inner = threadIdx.x % 4;  // k dimension

    // Compute the coordinates for the accumulator matrices
    int c_row = threadIdx.x / 4;
    int c_col = 2 * (threadIdx.x % 4);

    // Compute linear offsets into each matrix
    int ab_idx = outer * 4 + inner;
    int cd_idx = c_row * 8 + c_col;

    // Issue Tensor Core operation
    asm(
        "mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 
        { %0, %1 }, 
        %2,       
        %3,       
        { %4, %5 }; 
        =r"(D[cd_idx]),  "=r"(D[cd_idx + 1])

        : 
        :  "r"(A[ab_idx]),  "r"(B[ab_idx])
        :
        "r"(C[cd_idx]),  "r"(C[cd_idx + 1])
    );
}
```
CUTLASS GEMM MODEL
Decoupling application-specific behavior, Tensor Core operations, and Fused output operations

Matrix Multiply-Accumulate Phase

Epilogue Phase

Global Memory → Shared Memory
Shared Memory → Tensor Cores
Accumulators → Global Memory

Tiled, hierarchical model: reuse data in Shared Memory and in Registers

See CUTLASS GTC 2018 talk for more details about this model.
CUTLASS: OPTIMAL ABSTRACTION FOR TENSOR CORES

```cpp
using MmaWarp = cutlass::gemm::warp::DefaultMmaTensorOp<
    GemmShape<64, 64, 16>,
    half_t, LayoutA, // GEMM A operand
    half_t, LayoutB, // GEMM B operand
    float, RowMajor // GEMM C operand
>;

__shared__ ElementA smem_buffer_A[MmaWarp::Shape::kM * GemmK];
__shared__ ElementB smem_buffer_B[MmaWarp::Shape::kN * GemmK];

// Construct iterators into SMEM tiles
MmaWarp::IteratorA iter_A({smem_buffer_A, lda}, thread_id);
MmaWarp::IteratorB iter_B({smem_buffer_B, ldb}, thread_id);
MmaWarp::FragmentA frag_A;
MmaWarp::FragmentB frag_B;
MmaWarp::FragmentC accum;
MmaWarp mma_warp;
accum.clear();

#pragma unroll 1
for (int k = 0; k < GemmK; k += MmaWarp::Shape::kK) {
    iter_A.load(frag_A); // Load fragments from A and B matrices
    iter_B.load(frag_B);
    ++iter_A; ++iter_B; // Advance along GEMM K to next tile in
                        //   and B matrices
    mma_warp(accum, frag_A, frag_B, accum);
}
```
Tile Iterator Constructors:
Initialize pointers into permuted Shared Memory buffers

Fragments:
Register-backed arrays holding each thread’s data

Tile Iterator:
load() - Fetches data from permuted Shared Memory buffers
operator++() - advances to the next logical matrix in SMEM

Warp-level matrix multiply:
Decomposes a large matrix multiply into Tensor Core operations

using MmaWarp = cutlass::gemm::warp::DefaultMmaTensorOp<
 GemmShape<64, 64, 16>,
 half_t, LayoutA, // GEMM A operand
 half_t, LayoutB, // GEMM B operand
 float, RowMajor // GEMM C operand
>;

__shared__ ElementA smem_buffer_A[MmaWarp::Shape::KM * GemmK];
__shared__ ElementB smem_buffer_B[MmaWarp::Shape::KN * GemmK];

// Construct iterators into SMEM tiles
MmaWarp::IteratorA iter_A({smem_buffer_A, lda}, thread_id);
MmaWarp::IteratorB iter_B({smem_buffer_B, ldb}, thread_id);

MmaWarp::FragmentA frag_A;
MmaWarp::FragmentB frag_B;
MmaWarp::FragmentC accum;

MmaWarp mma_warp;
accum.clear();

#pragma unroll 1
for (int k = 0; k < GemmK; k += MmaWarp::Shape::kK) {

 iter_A.load(frag_A); // Load fragments from A and B matrices
 iter_B.load(frag_B);

 ++iter_A; ++iter_B; // Advance along GEMM K to next tile in
 // A and B matrices

 mma_warp(accum, frag_A, frag_B, accum);
}
// Compute position within threadblock
int thread_idx = threadIdx.x;

// Construct iterators to A and B operands
typename MmaMultistage::IteratorA iterator_A(
 params.params_A,
 ptr_A,
 {params.problem_size.m(), problem_size_k},
 thread_idx,
 tb_offset_A);

typename MmaMultistage::IteratorB iterator_B(
 params.params_B,
 ptr_B,
 {problem_size_k, params.problem_size.n()},
 thread_idx,
 tb_offset_B);

// Broadcast the warp_id computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;

// Construct multistage, pipelined thread-scoped matrix multiply
// MmaMultistage mma_multistage(
// shared_storage.main_loop, thread_idx, warp_idx, lane_idx);

typename MmaMultistage::FragmentC accumulators;
accumulators.clear();

// Compute matrix multiply
mma_multistage(
 gemm_k_iterations,
 accumulators,
 iterator_A,
 iterator_B,
 accumulators);
// Compute position within threadblock
int thread_idx = threadIdx.x;

// Construct iterators to A and B operands
typename MmaMultistage::IteratorA iterator_A(
 params.params_A,
 ptr_A,
 {params.problem_size.m(), problem_size_k},
 thread_idx,
 tb_offset_A);

typename MmaMultistage::IteratorB iterator_B(
 params.params_B,
 ptr_B,
 {problem_size_k, params.problem_size.n()},
 thread_idx,
 tb_offset_B);

// Broadcast the warp_idx computed by lane 0 to ensure dependent code
// is compiled as warp-uniform.
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;

// Construct multistage, pipelined thread-scoped matrix multiply
MmaMultistage mma_multistage(
 shared_storage.main_loop, thread_idx, warp_idx, lane_idx);

typename MmaMultistage::FragmentC accumulators;
accumulators.clear();

// Compute matrix multiply
mma_multistage(
 gemm_k_iterations,
 accumulators,
 iterator_A,
 iterator_B,
 accumulators);
EPILOGUE PHASE

Efficiently storing GEMM output to Global Memory

Matrix Multiply-Accumulate Phase

Shared Memory → Tensor Cores

Global Memory → Shared Memory

Epilogue Phase

- Rearrangement of accumulators
- Fused math operations
- Type conversions and packing
- Coalesced access to Global Memory
TENSOR CORE REGISTER ARRANGEMENT

uint32_t const A[4];
uint32_t const B[2];

float const C[4];
float D[4];

// Example targets 16-by-8-by-32 Tensor Core operation
asm(
 "mma.sync.aligned.ml6n8k16.row.col.f32.f16.f16.f32
 "
 " { %0, %1, %2, %3 },
 " { %4, %5, %6, %7 },
 " { %8, %9 },
 " { %10, %11, %12, %13 };"
 :
 "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
 ": "x"(A[0]), "x"(A[1]), "x"(A[2]), "x"(A[3]),
 "x"(B[0]), "x"(B[1]),
 "f"(C[0]), "f"(C[1]), "f"(C[2]), "f"(C[3])

};

Warp-wide Tensor Core operation: 16-by-8-by-256b
WARP-WIDE ARRANGEMENT OF ACCUMULATORS

Threadblock Tile

<table>
<thead>
<tr>
<th>Shape</th>
<th>Threadblock Count</th>
<th>Warp Shape</th>
<th>Accumulator Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-by-64</td>
<td>64</td>
<td>32-by-32</td>
<td>32</td>
</tr>
<tr>
<td>128-by-64</td>
<td>128</td>
<td>64-by-32</td>
<td>64</td>
</tr>
<tr>
<td>128-by-128</td>
<td>128</td>
<td>64-by-64</td>
<td>128</td>
</tr>
<tr>
<td>256-by-128</td>
<td>256</td>
<td>64-by-64</td>
<td>128</td>
</tr>
</tbody>
</table>

Typical threadblock configurations.

- Four warps per threadblock to utilize SM.
int const kWarpCountM = 2;
int const kWarpCountN = 2;
int const kMmaCountM = 2;
int const kMmaCountN = 4;
int const kMmaShapeM = 16;
int const kMmaShapeN = 8;

// Accumulator array in Registers
float accumulators[kMmaCountM * kMmaCountN * 4];

// Output matrix in Global Memory
float *D_gmem = ...;

int ldm = ...

// Indexing logic – map threads to coordinates
int warp_idx = (threadIdx.x / 32);
int thread_idx = (threadIdx.x % 32);

int warp_m = (warp_idx % kWarpCountM) * (kWarpCountM * kMmaCountM * kMmaShapeM);
int warp_n = (warp_idx / kWarpCountN) * (kWarpCountN * kMmaCountN * kMmaShapeN);

int thread_m = (thread_idx / 4);
int thread_n = (thread_idx % 4) * 2;

// Loop over MMA instructions in the M dimension
#pragma unroll
for (int mma_m = 0; mma_m < kMmaCountM; ++mma_m) {

// Loop over MMA instructions in the N dimension
#pragma unroll
for (int mma_n = 0; mma_n < kMmaCountN; ++mma_n) {

// Loop over accumulators within one MMA instruction
#pragma unroll
for (int i = 0; i < 4; ++i) {

// Compute index in accumulator array
int r_idx = i + mma_m * 4 + mma_n * 4 * kWarpCountM;

// Compute output location within threadblock
int m = warp_m + thread_m + mma_m * kMmaShapeM + (i / 2) * 8;
int n = warp_n + thread_n + mma_n * kMmaShapeN + (i % 2);

// Store to Global Memory
D_gmem[m + n * ldm] = accumulators[r_idx];
}
}
}
EFFICIENT EPILOGUES

Directly storing accumulators is not efficient for all data types and configurations
- Each warp writes to a disjoint 8-by-8 tile at a time
- Difficult for the hardware coalesce into accesses spanning large cache lines
- Mixed precision narrows the memory access size, resulting in small store operations

CUTLASS epilogues exchange accumulators through Shared Memory first

Objectives for efficiently accessing Global Memory
- Threads striped over (a few) large, contiguous tiles
- Store to whole cache lines, limited only by the width of Threadblock tiles
- Support larger vector access sizes
- Take advantage of data exchange by fusing other operations
EFFICIENT EPILOGUES

for each “slice”

 __syncthreads();
 Store a slice of accumulators to Shared Memory
 __syncthreads();
 Load the slice of accumulators from Shared Memory into registers
 Compute fused operations on accumulator slice and other matrices
 Store to Global Memory
 Advance Global Memory pointers
for each "slice"
 __syncthreads();
 Store a slice of accumulators to Shared Memory
 __syncthreads();
 Load the slice of accumulators from Shared Memory into registers
 Compute fused operations on accumulator slice and other matrices
 Store to Global Memory
 Advance Global Memory pointers
EFFICIENT EPILOGUES

for each “slice”

__syncthreads();
Store a slice of accumulators to Shared Memory
__syncthreads();
Load the slice of accumulators from Shared Memory into registers
Compute fused operations on accumulator slice and other matrices
Store to Global Memory
Advance Global Memory pointers
for each “slice”

__syncthreads();
Store a slice of accumulators to Shared Memory
__syncthreads();
Load the slice of accumulators from Shared Memory into registers
Compute fused operations on accumulator slice and other matrices
Store to Global Memory
Advance Global Memory pointers
template <...>
class Epilogue {
public:

/// Executes the steps of the CUTLASS Epilogue
CUTLASS_DEVICE
void operator()(OutputOp const &output_op, // < Elementwise functor
 OutputTileIterator destination_iterator, // < Tile iterator for destination tensor in Global Memory
 AccumulatorTile const &accumulators, // < Accumulators – computed during Matrix Multiply phase
 OutputTileIterator source_iterator) {

 typename OutputTileIterator::Fragment source_fragment;
 source_fragment.clear();

 // Iterator over warp-level accumulator fragment
 AccumulatorFragmentIterator accum_fragment_iterator(accumulators);

 // Iterate over slices of the accumulator
 #pragma unroll
 for (int iter = 0; iter < OutputTileIterator::kIterations; ++iter) {
 // Load the source tensor from Global Memory
 source_iterator.load(source_fragment);
 ++source_iterator;
 __syncthreads();

 // Store slice of accumulators to Shared Memory
 typename AccumulatorFragmentIterator::Fragment accum_fragment;
 accum_fragment_iterator.load(accum_fragment);
 ++accum_fragment_iterator;
 this->warp_tile_iterator_.store(accum_fragment);
 __syncthreads();

 // Load fragments from Shared Memory
 typename SharedLoadIterator::Fragment aligned_accum_fragment;
 shared_load_iterator_.load(aligned_accum_fragment);

 // Compute an elementwise operation on the accumulated result
 typename OutputTileIterator::Fragment output_fragment;
 apply_output_operator_(output_fragment, output_op, aligned_accum_fragment, source_fragment);

 // Store the resulting fragment to Global Memory
 destination_iterator.store(output_fragment);
 ++destination_iterator;
 }
}
};
Combining Matrix Multiply and Epilogue Phases

Accumulator fragment
Contains result of matrix multiply operation

Execution of matrix multiply
Issues Tensor Core operations

Epilogue functor
Performs elementwise operations on result of matrix multiply

Epilogue output tile iterator
Loads and stores to output matrix in Global Memory

Epilogue constructor
Initializes internal pointers to store and load from Shared Memory

Execution of Epilogue
Transforms accumulators and stores to Global Memory

```
// Matrix multiply phase

MmaMultistage mma_multistage(
    shared_storage.main_loop, thread_idx, warp_idx, lane_idx);

typename MmaMultistage::FragmentC accumulators;

// Execute matrix multiply
mma_multistage(
    gemm_k_iterations,
    accumulators,
    iterator_A,
    iterator_B,
    accumulators);

// Epilogue phase

EpilogueOutputOp output_op(params.output_op);

// Compute threadblock’s location within Global Memory
MatrixCoord threadblock_offset(
    threadblock_tile_offset.m() * MmaMultistage::Shape::kM,
    threadblock_tile_offset.n() * MmaMultistage::Shape::kN);

// Tile iterator loading from source tensor.
typename Epilogue::OutputTileIterator iterator_C(
    params.params_C,
    ptr_C,
    params.problem_size.mn(),
    thread_idx,
    threadblock_offset);

Epilogue epilogue(
    shared_storage.epilogue, thread_idx, warp_idx, lane_idx);

// Execute the epilogue phase
epilogue(
    output_op, iterator_C, accumulators, iterator_C);
```
EPILOGUE FUSION DESIGN PATTERNS
Elementwise operations may be performed on register-backed arrays before storing.
Additional tensors may be loaded, subject to register liveness constraints.
Vector sizes may be arbitrarily large; this is useful for storing bit-vectors for ReLU calculations (8 x 1b).
Composing GEMM with Epilogue Functor

Define the input, output, and compute types

Define the epilogue functor

Define the device-wide GEMM operator

E.g. GEMM “NN” using Tensor Cores

Construct “Arguments” structure

Problem size, pointers and strides, epilogue functor arguments

Launch the GEMM kernel grid

```
using ElementInput = cutlass::half_t;
using ElementOutput = float;
using ElementAccumulator = float;
using ElementEpilogueCompute = float;

using EpilogueFunctor = cutlass::epilogue::thread::LinearCombinationGELU<
    ElementOutput,  // Output tensor data type
    8,              // Epilogue “vector size” – 16 bytes
    ElementAccumulator,  // Accumulator data type – must match mainloop
    ElementEpilogueCompute  // Epilogue “compute type” – type of alpha/beta
>;

using Gemm = cutlass::gemm::device::Gemm<
    ElementInput,  cutlass::layout::ColumnMajor,
    ElementInput,  cutlass::layout::ColumnMajor,
    ElementOutput, cutlass::layout::ColumnMajor,
    ElementAccumulator,
    cutlass::arch::OpClassTensorOp,
    cutlass::arch::Sm80,
    cutlass::gemm::GemmShape<128, 256, 64>,
    cutlass::gemm::GemmShape<64, 64, 64>,
    cutlass::gemm::GemmShape<16, 8, 16>,
    EpilogueFunctor,
    cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
    3
>;

// Collect arguments
typename Gemm::Arguments arguments{
    problem_size,
    tensor_A.device_ref(),
    tensor_B.device_ref(),
    tensor_C.device_ref(),
    tensor_D.device_ref(),
    {alpha, beta}       // Arguments passed to EpilogueFunctor
};

Gemm gemm_op;

gemm_op(arguments);       // Run the GEMM
```
```cpp
class LinearCombinationGELU {
public:

    /// Host-constructable parameters structure
    struct Params {
        ElementCompute alpha;
        ElementCompute beta;
        ElementCompute const *alpha_ptr;
        ElementCompute const *beta_ptr;
        ...;
    };

    ElementCompute alpha_, _beta;

    /// Constructs the function object, possibly loading from pointers in host memory
    CUTLASS_HOST_DEVICE LinearCombinationGELU(Params const &params) {
        alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
        beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
    }

    /// Computes: D = gelu( alpha * accumulator )
    CUTLASS_HOST_DEVICE FragmentOutput operator()(FragmentAccumulator const &accumulator) const {
        // Convert source to internal compute numeric type
        NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round>
            accumulator_converter;

        ComputeFragment converted_accumulator = accumulator_converter(accumulator);

        // Perform elementwise operations
        ComputeFragment intermediate;

        multiplies<ComputeFragment> mul_add_accumulator;
        GELU_Taylor<ComputeFragment> gelu;

        intermediate = mul_add_accumulator(alpha_, converted_accumulator); // D = alpha * Accum

        intermediate = gelu(intermediate);

        // Convert to destination numeric type
        NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round>
            destination_converter;

        return destination_converter(intermediate);
    }

    GEMM + Elementwise example functor: LinearCombinationGELU

    "Params" nested structure contains arguments passed from caller
    Constructor optionally fetches scalars via device pointers
    Function call operator performs elementwise arithmetic and conversion
    Returned value stored to Global Memory by Epilogue

    "Thread-wide" epilogue functor
```
BROADCASTING VECTORS

Fusing operations in the Epilogue

Vectors may be loaded prior to or during the Epilogue steps and broadcast to elementwise operations.

See `include/cutlass/epilogue/threadblock/epilogue_with_broadcast.h`

Vector is broadcast over columns

Matrix product computation
\[AB[m, n] = \text{sum}_k(A[m, k] \times B[k, n]) \]

Elementwise operations with broadcast
\[Z[m, n] = \text{OutputOp}_0(AB[m, n], C[m, n], V[n]) \]
\[T[m, n] = \text{OutputOp}_1(AB[m, n], C[m, n], V[n]) \]

Elementwise operation may output two tensors \(Z \) and \(T \)
BROADCASTING VECTORS
Fusing operations in the Epilogue

Vectors may be loaded prior to or during the Epilogue steps and broadcast to elementwise operations

See include/cutlass/epilogue/threadblock/epilogue_with_broadcast.h
GEMM + Broadcast + Elementwise

Define the epilogue functor for fused broadcast + elementwise

using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationBiasElementwise<
 ElementOutput,
 ElementAccumulator,
 ElementCompute,
 ElementZ,
 ElementT,
 8,
 cutlass::epilogue::thread::GELU_taylor<float>>;

using GemmKernel =
 typename cutlass::kernel::DefaultGemmWithBroadcast<
 cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, 8,
 cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, 8,
 cutlass::half_t, cutlass::layout::ColumnMajor,
 float,
 cutlass::arch::OpClassTensorOp,
 cutlass::arch::Sm80,
 cutlass::gemm::GemmShape<128, 128, 32>,
 cutlass::gemm::GemmShape<64, 64, 32>,
 cutlass::gemm::GemmShape<16, 8, 16>,
 EpilogueOutputOp,
 cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>,
 3,
 cutlass::arch::OpMultiplyAdd
 >::GemmKernel;

using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;

typedef Gemm::Arguments arguments{
 ...
 tensor_Broadcast.device_data(),
 tensor_T.device_data(),
 ...
 tensor_Z.layout().stride(0),
 tensor_T.layout().stride(0),
};
GEMM + Broadcast + Elementwise example functor:
LinearCombinationBiasElementwise

Functor outputs `frag_Z` and `frag_T`

`LinearCombinationBiasElementwise` is specialized for linear scaling with broadcast

Function call operator performs elementwise arithmetic and conversion

Output arguments are stored to Global Memory by EpilogueWithBroadcast
REDUCTIONS OVER GEMM OUTPUT

Fusing operations in the Epilogue

Reductions over Threadblock tile may be fused into Epilogue

See include/cutlass/epilogue/threadblock/epilogue_with_reduction.h
REDUCTIONS OVER GEMM OUTPUT

Fusing operations in the Epilogue

```
// Epilogue with reduction
struct EpilogueWithReduction {

  CUTLASS_DEVICE void operator()(
    OutputOp const &output_op,
    ElementVector * reduction_output_ptr,
    ...
  ) {

    ReductionFragment reduction_fragment;
    reduction_fragment.clear();

    // Iterate over accumulator tile
    for (int iter = 0; iter < OutputTileIterator::kIterations; ++iter) {
      ...

      // Elementwise operation
      for (int i = 0; i < kOutputOpIterations; ++i) {
        compute_fragment[i] = output_op(accumulator_fragment[i]);
      }

      // Partial reduction within a thread
      for (int column = 0; column < ReductionDetail::kColumnsPerThread; ++column) {
        for (int row = 0; row < ReductionDetail::kRowsPerThread; ++row) {
          reduction_fragment[column] = reduction_op(
            reduction_fragment[column],
            compute_fragment[row * ReductionDetail::kColumnsPerThread + column]);
        }
      }

      // Data exchange through Shared Memory, serial reduction, and store to Global Memory
      reduction_(problem_size, threadblock_offset, reduction_output_ptr,
                 reduction_fragment);
    }
  }
};
```

Reductions over Threadblock tile may be fused into Epilogue

See include/cutlass/epilogue/threadblock/epilogue_with_reduction.h
// GEMM with fused partial reduction
// Computes the following:
// Z[m, n] = OutputOp(AB[m, n], C[m, n], T[m, n])
// V[n] = Reduce_m(Z[m, n], identity_element)

using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationDReluConditionalBits<
 ElementCompute,
 ElementAccumulator,
 ElementOutput,
 8
>;

using ReductionOp = cutlass::plus<float>;

using GemmKernel =
 typename
cutlass::gemm::kernel::DefaultGemmWithReduction<
 cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, 8,
 cutlass::half_t, cutlass::layout::ColumnMajor, cutlass::ComplexTransform::kNone, 8,
 cutlass::half_t, cutlass::layout::ColumnMajor,
 float,
 cutlass::arch::OpClassTensorOp,
 cutlass::arch::Sm80,
 cutlass::gemm::GemmShape<128, 128, 32>,
 cutlass::gemm::GemmShape<64, 64, 32>,
 cutlass::gemm::GemmShape<16, 8, 16>,
 EpilogueOutputOp,
 // Elementwise functor
 ReductionOp,
 // Reduction functor
 cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>,
 5,
 cutlass::arch::OpMultiplyAdd
>::GemmKernel;

using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GEMM + Elementwise + Reduction
example functor:
LinearCombinationDReluConditionalBits

Functor outputs one fragment prior to reduction

`LinearCombinationDReluConditionalBits` accepts an optional tensor of 1b condition bits produced by the forward pass

Condition bits are unpacked into `bool` elements and used to conditionally output \(dy=0 \).

Returned value `\(dy \)` stored to Global Memory by EpilogueWithReduction

```
class LinearCombinationDReluConditionalBits {
public:

    /// Computes linear scaling: D = alpha * accumulator
    CUTLASS_HOST_DEVICE FragmentCompute operator()(const FragmentAccumulator& accumulator, const FragmentTensor& tensor) const {

        // Convert source to internal compute numeric type
        NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
        FragmentCompute converted_accumulator = accumulator_converter(accumulator);

        // Perform binary operations
        multiplies<FragmentCompute> mul_accumulator;
        FragmentCompute dy = mul_accumulator(alpha_, converted_accumulator);

        // Obtain from packed bits
        bool conditions[kCount];
        UnpackPredicates<kCount> unpack_predicates;
        unpack_predicates(conditions, tensor);

        CUTLASS_PRAGMA_UNROLL
        for (int i = 0; i < kCount; ++i) {
            if (!conditions[i]) {
                dy[i] = ElementCompute();
            }
        }

        return dy;
    }
};
```

“Thread-wide” epilogue functor
CONCLUSION
CUTLASS PROVIDES REUSABLE TEMPLATES FOR FUSING WITH GEMM AND CONVOLUTION

CUTLASS

- CUTLASS provides tuned implementations of GEMM and CONV
- Extensible via custom functors on input and output
- Client defines functors for: elementwise, broadcast, reduction
- Capable of near-peak performance with CUDA 11.5 Toolkit

CUTLASS 2.8: November 2021

- Block-resident CONV-CONV fused kernels
- Emulated single-precision with TensorFloat32
- Implicit GEMM convolution fusion on input
- Grouped GEMM implementation

Try it out! https://github.com/NVIDIA/cutlass
REFERENCES

NVIDIA Ampere Architecture:
“Inside the NVIDIA Ampere Architecture” (GTC 2020 - S21730)
“NVIDIA Ampere Architecture In-Depth” (blog post)
“CUDA New Features and Beyond” (GTC 2020 - S21760)
“Tensor Core Performance on NVIDIA GPUs” (GTC 2020 - S21929)
“Inside the Compilers, Libraries and Tools for Accelerated Computing” (GTC 2020 - S21766)

CUTLASS
https://github.com/NVIDIA/cutlass (open source software, New BSD license)
CUTLASS Parallel For All blog post
GTC 2018 talk (S8854) : CUTLASS: Software primitives for dense linear algebra at all levels and scales within CUDA
GTC 2019 talk (S9593) : cuTENSOR: High-performance Tensor Operations in CUDA (joint talk with cuTENSOR)
GTC 2020 talk (S21745) : Developing CUDA kernels to push Tensor Cores to the Absolute Limit on NVIDIA A100
GTC 2021 talk (S31883) : Accelerating Convolution with Tensor Cores in CUTLASS
TENSOR CORES ON NVIDIA AMPERE ARCHITECTURE
WHAT ARE TENSOR CORES?

Matrix operations: $D = \text{op}(A, B) + C$
- Matrix multiply-add
- XOR-POPC

M-by-N-by-K matrix operation
- Warp-synchronous, collective operation
- 32 threads within warp collectively hold A, B, C, and D operands
NVIDIA AMPERE ARCHITECTURE - TENSOR CORE OPERATIONS

<table>
<thead>
<tr>
<th>PTX</th>
<th>Data Types (A * B + C)</th>
<th>Shape</th>
<th>Speedup on NVIDIA A100 (vs F32 CUDA cores)</th>
<th>Speedup on Turing* (vs F32 Cores)</th>
<th>Speedup on Volta* (vs F32 Cores)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mma.sync.m16n8k16</td>
<td>F16 * F16 + F16</td>
<td>16-by-8-by-16</td>
<td>16x</td>
<td>8x</td>
<td>8x</td>
</tr>
<tr>
<td>mma.sync.m16n8k8</td>
<td>F16 * F16 + F32</td>
<td>16-by-8-by-8</td>
<td>16x</td>
<td>8x</td>
<td>8x</td>
</tr>
<tr>
<td></td>
<td>BF16 * BF16 + F32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mma.sync.m16n8k8</td>
<td>TF32 * TF32 + F32</td>
<td>16-by-8-by-8</td>
<td>8x</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mma.sync.m8n8k4</td>
<td>F64 * F64 + F64</td>
<td>8-by-8-by-4</td>
<td>2x</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mma.sync.m16n8k32</td>
<td>S8 * S8 + S32</td>
<td>16-by-8-by-32</td>
<td>32x</td>
<td>16x</td>
<td>N/A</td>
</tr>
<tr>
<td>mma.sync.m16n8k16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mma.sync.m16n8k64</td>
<td>S4 * S4 + S32</td>
<td>16-by-8-by-64</td>
<td>64x</td>
<td>32x</td>
<td>N/A</td>
</tr>
<tr>
<td>mma.sync.m16n8k256</td>
<td>B1 ^ B1 + S32</td>
<td>16-by-8-by-256</td>
<td>256x</td>
<td>128x</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Instructions with equivalent functionality for Turing and Volta differ in shape from the NVIDIA Ampere Architecture in several cases.
F16 * F16 + F32

16-by-8-by-16

mma.sync.aligned (via inline PTX)

float D[4];
uint32_t const A[4];
uint32_t const B[2];
float const C[4];

// Example targets 16-by-8-by-32 Tensor Core operation
asm(
 "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 "
 " { %0, %1, %2, %3 }, "
 " { %4, %5, %6, %7 }, "
 " { %8, %9 },
 " { %10, %11, %12, %13 };"
 :
 "=f"(D[0]), "=f"(D[1]), "=f"(D[2]), "=f"(D[3])
 :
 "r"(B[0]), "r"(B[1]),
 "f"(C[0]), "f"(C[1]), "f"(C[2]), "f"(C[3])
);

mma.sync.aligned
(via inline PTX)

```c
int32_t   D[4];
uint32_t const A[4];
uint32_t const B[2];
int32_t const C[4];
```

// Example targets 16-by-8-by-32 Tensor Core operation

```asm
asm(
  "mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 "
  " { %0, %1, %2, %3 },    "
  " { %4, %5, %6, %7 },    "
  " { %8, %9 },          "
  " { %10, %11, %12, %13 };"
):
  "=r"(D[0]), "=r"(D[1]), "=r"(D[2]), "=r"(D[3])
:
  "r"(B[0]), "r"(B[1]),
  "r"(C[0]), "r"(C[1]), "r"(C[2]), "r"(C[3])
);
```

HALF-PRECISION: F16 * F16 + F16

16-by-8-by-16

uint32_t D[2]; // two registers needed (vs. four)
uint32_t const A[4];
uint32_t const B[2];
uint32_t const C[2]; // two registers needed (vs. four)

// Example targets 16-by-8-by-16 Tensor Core operation
asm(
 "mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 "
 " { %0, %1},
 " { %2, %3, %4, %5 },
 " { %6, %7 },
 " { %8, %9 };
 :
 "=r"(D[0]), "=r"(D[1])
 :
 "r"(B[0]), "r"(B[1]),
 "r"(C[0]), "r"(C[1])
);
CUTLASS: wraps PTX in template

`m-by-n-by-k`

`cutlass::arch::Mma`:

```cpp
/// Matrix multiply-add operation
template <
    /// Size of the matrix product (concept: GemmShape)
    typename Shape,
    /// Number of threads participating
    int kThreads,
    /// Data type of A elements
    typename ElementA,
    /// Layout of A matrix (concept: MatrixLayout)
    typename LayoutA,
    /// Data type of B elements
    typename ElementB,
    /// Layout of B matrix (concept: MatrixLayout)
    typename LayoutB,
    /// Element type of C matrix
    typename ElementC,
    /// Layout of C matrix (concept: MatrixLayout)
    typename LayoutC,
    /// Inner product operator
    typename Operator>
struct Mma;
```

https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/arch/mma_sm80.h
CUTLASS: wraps PTX in template

16-by-8-by-16

```cpp
__global__ void kernel() {
    // arrays containing logical elements
    Array<half_t, 8> A;
    Array<half_t, 4> B;
    Array<float, 4> C;

    // define the appropriate matrix operation
    cutlass::arch::Mma< GemmShape<16, 8, 16>, 32, ... > mma;

    // in-place matrix multiply-accumulate
    mma(C, A, B, C);

    ...
}
```

https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/arch/mma_sm80.h